The way in which disturbances from human land use are patterned in space across scales can have important consequences for efforts to govern human/environment with regard to, but not only, invasive spread-dispersal processes. In this context, we explore the potential of disturbance patterns along a continuum of scales as proxies for identifying the geographical regions prone to spread of invasive plant species. To this end, we build on a previous framework of cross-scale disturbance patterns, exercising the approach for the Apulia region (South Italy). We first review procedures and results introducing disturbance maps and sliding windows to measure composition (amount) and configuration (contagion) of disturbance patterns both for real and simulated landscapes from random, multifractal and hierarchical neutral models. We introduce cross-scale disturbance profiles obtained by clustering locations from real and simulated landscapes, which are used as foils for comparison to the real landscapes on the same pattern transition space. Critical percolation thresholds derived from landscape observations and theoretical works are discussed in order to identify critical scale domains. With reference to the actual land use and invasive alien flora correlates of disturbance patterns, a cross-scale “invasibility” map of the Apulia region is derived, which shows sub-regions and scale domains with different potentials for the invasive spread of undesirable species. We discuss the potential effect of contagious and non-contagious disturbances like climate change and why multifractal-like disturbance patterns might be more desirable than others to counter biological invasions in a multi-scale and multi-level context of adaptive planning, design and management of disturbance.

Towards the planning and design of disturbance patterns across scales to counter biological invasions

ZURLINI, Giovanni
Primo
Writing – Original Draft Preparation
;
PETROSILLO, IRENE
Secondo
Writing – Original Draft Preparation
;
MEDAGLI, Pietro
Membro del Collaboration Group
;
2013-01-01

Abstract

The way in which disturbances from human land use are patterned in space across scales can have important consequences for efforts to govern human/environment with regard to, but not only, invasive spread-dispersal processes. In this context, we explore the potential of disturbance patterns along a continuum of scales as proxies for identifying the geographical regions prone to spread of invasive plant species. To this end, we build on a previous framework of cross-scale disturbance patterns, exercising the approach for the Apulia region (South Italy). We first review procedures and results introducing disturbance maps and sliding windows to measure composition (amount) and configuration (contagion) of disturbance patterns both for real and simulated landscapes from random, multifractal and hierarchical neutral models. We introduce cross-scale disturbance profiles obtained by clustering locations from real and simulated landscapes, which are used as foils for comparison to the real landscapes on the same pattern transition space. Critical percolation thresholds derived from landscape observations and theoretical works are discussed in order to identify critical scale domains. With reference to the actual land use and invasive alien flora correlates of disturbance patterns, a cross-scale “invasibility” map of the Apulia region is derived, which shows sub-regions and scale domains with different potentials for the invasive spread of undesirable species. We discuss the potential effect of contagious and non-contagious disturbances like climate change and why multifractal-like disturbance patterns might be more desirable than others to counter biological invasions in a multi-scale and multi-level context of adaptive planning, design and management of disturbance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/381077
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact