In this paper we investigate the relation between the multiplicities of split strongly abelian p-chief factors of nite-dimensional restricted Lie algebras and first degree restricted cohomology. As an application we obtain a characterization of solvable restricted Lie algebras in terms of the multiplicities of split strongly abelian p-chief factors. Moreover, we derive some results in the representation theory of restricted Lie algebras related to the principal block and the projective cover of the trivial irreducible module of a finite-dimensional restricted Lie algebra. In particular, we obtain a characterization of finite-dimensional solvable restricted Lie algebras in terms of the second Loewy layer of the projective cover of the trivial irreducible module. The analogues of these results are well known in the modular representation theory of finite groups.
Split strongly abelian p-chief factors and first degree restricted cohomology
SICILIANO, Salvatore;
2014-01-01
Abstract
In this paper we investigate the relation between the multiplicities of split strongly abelian p-chief factors of nite-dimensional restricted Lie algebras and first degree restricted cohomology. As an application we obtain a characterization of solvable restricted Lie algebras in terms of the multiplicities of split strongly abelian p-chief factors. Moreover, we derive some results in the representation theory of restricted Lie algebras related to the principal block and the projective cover of the trivial irreducible module of a finite-dimensional restricted Lie algebra. In particular, we obtain a characterization of finite-dimensional solvable restricted Lie algebras in terms of the second Loewy layer of the projective cover of the trivial irreducible module. The analogues of these results are well known in the modular representation theory of finite groups.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.