Environment awareness through advanced sensing systems is a major requirement for a mobile robot to operate safely, particularly when the environment is unstructured, as in an outdoor setting. In this paper, a multi-sensory approach is proposed for automatic traversable ground detection using 3D range sensors. Specifically, two classifiers are presented, one based on laser data and one based on stereovision. Both classifiers rely on a self-learning scheme to detect the general class of ground and feature two main stages: an adaptive training stage and a classification stage. In the training stage, the classifier learns to associate geometric appearance of 3D data with class labels. Then, it makes predictions based on past observations. The output obtained from the single-sensor classifiers is statistically combined exploiting their individual advantages in order to reach an overall better performance than could be achieved by using each of them separately. Experimental results, obtained with a test bed platform operating in a rural environment, are presented to validate this approach, showing its effectiveness for autonomous safe navigation.

LIDAR and Stereo Imagery Integration for Safe Navigation in Outdoor Settings

REINA, GIULIO;
2013-01-01

Abstract

Environment awareness through advanced sensing systems is a major requirement for a mobile robot to operate safely, particularly when the environment is unstructured, as in an outdoor setting. In this paper, a multi-sensory approach is proposed for automatic traversable ground detection using 3D range sensors. Specifically, two classifiers are presented, one based on laser data and one based on stereovision. Both classifiers rely on a self-learning scheme to detect the general class of ground and feature two main stages: an adaptive training stage and a classification stage. In the training stage, the classifier learns to associate geometric appearance of 3D data with class labels. Then, it makes predictions based on past observations. The output obtained from the single-sensor classifiers is statistically combined exploiting their individual advantages in order to reach an overall better performance than could be achieved by using each of them separately. Experimental results, obtained with a test bed platform operating in a rural environment, are presented to validate this approach, showing its effectiveness for autonomous safe navigation.
2013
9781479908806
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/380996
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 0
social impact