Thyroid hormone 3,5,3'-triiodo-l-thyronine (T3) is known to affect cell metabolism through both the genomic and non-genomic actions. Recently, we demonstrated in HepG2 cells that T3 controls the expression of SREBP-1, a transcription factor involved in the regulation of lipogenic genes. This occurs by activation of a cap-independent translation mechanism of its mRNA. Such a process is dependent on non-genomic activation of both MAPK/ERK and PI3K/Akt pathways. The physiological role of 3,5-diiodo-l-thyronine (T2), previously considered only as a T3 catabolite, is of growing interest. Evidences have been reported that T2 rapidly affects some metabolic pathways through non-genomic mechanisms. Here, we show that T2, unlike T3, determines the block of proteolytic cleavage of SREBP-1 in HepG2 cells, without affecting its expression at the transcriptional or translational level. Consequently, Fatty Acid Synthase expression is reduced. T2 effects depend on the concurrent activation of MAPKs ERK and p38, of Akt and PKC-delta pathways. Upon the activation of these signals, apoptosis of HepG2 cells seems to occur, starting at 12h of T2 treatment. PKC-delta appears to act as a switch between p38 activation and Akt suppression, suggesting that this PKC may function as a controller in the balance of pro-apoptotic (p38) and anti-apoptotic (Akt) signals in HepG2 cells.

3,5-Diiodo-l-thyronine induces SREBP-1 proteolytic cleavage block and apoptosis in human hepatoma (Hepg2) cells.

DAMIANO, FABRIZIO;MARSIGLIANTE, Santo;SICULELLA, Luisa
2013-01-01

Abstract

Thyroid hormone 3,5,3'-triiodo-l-thyronine (T3) is known to affect cell metabolism through both the genomic and non-genomic actions. Recently, we demonstrated in HepG2 cells that T3 controls the expression of SREBP-1, a transcription factor involved in the regulation of lipogenic genes. This occurs by activation of a cap-independent translation mechanism of its mRNA. Such a process is dependent on non-genomic activation of both MAPK/ERK and PI3K/Akt pathways. The physiological role of 3,5-diiodo-l-thyronine (T2), previously considered only as a T3 catabolite, is of growing interest. Evidences have been reported that T2 rapidly affects some metabolic pathways through non-genomic mechanisms. Here, we show that T2, unlike T3, determines the block of proteolytic cleavage of SREBP-1 in HepG2 cells, without affecting its expression at the transcriptional or translational level. Consequently, Fatty Acid Synthase expression is reduced. T2 effects depend on the concurrent activation of MAPKs ERK and p38, of Akt and PKC-delta pathways. Upon the activation of these signals, apoptosis of HepG2 cells seems to occur, starting at 12h of T2 treatment. PKC-delta appears to act as a switch between p38 activation and Akt suppression, suggesting that this PKC may function as a controller in the balance of pro-apoptotic (p38) and anti-apoptotic (Akt) signals in HepG2 cells.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/380985
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 25
social impact