This paper proposes several efficient and less complex signal conditioning algorithms for brain signal enhancement in remote healthcare monitoring applications. In clinical environment during electroencephalogram (EEG) recording, several artifacts encounter and mask tiny features underlying brain wave activity. Especially in remote clinical monitoring, low computational complexity filters are desirable. Hence, in our paper, we propose various efficient and computationally simple adaptive noise cancelers for EEG enhancement. These schemes mostly employ simple addition and shift operations, and achieve considerable speed over the other conventional realizations. We have tested the proposed implementations on real brain waves recorded using emotive EEG system. Our experiments show that the proposed realization gives better performance compared with existing realizations in terms of signal to noise ratio, computational complexity, convergence rate, excess mean square error, misadjustment, and coherence.

Efficient Signal Conditioning techniques for Brain activity in Remote Health Monitoring Network

LAY EKUAKILLE, Aime
2013-01-01

Abstract

This paper proposes several efficient and less complex signal conditioning algorithms for brain signal enhancement in remote healthcare monitoring applications. In clinical environment during electroencephalogram (EEG) recording, several artifacts encounter and mask tiny features underlying brain wave activity. Especially in remote clinical monitoring, low computational complexity filters are desirable. Hence, in our paper, we propose various efficient and computationally simple adaptive noise cancelers for EEG enhancement. These schemes mostly employ simple addition and shift operations, and achieve considerable speed over the other conventional realizations. We have tested the proposed implementations on real brain waves recorded using emotive EEG system. Our experiments show that the proposed realization gives better performance compared with existing realizations in terms of signal to noise ratio, computational complexity, convergence rate, excess mean square error, misadjustment, and coherence.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/380577
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 34
social impact