In this paper we describe the design, fabrication and characterization of gold nano-patches, deposited on gallium nitride substrate, acting as optical nanoantennas able to efficiently localize the electric field at the metal-dielectric interface. We analyse the performance of the proposed device, evaluating the transmission and the electric field localization by means of a three-dimensional finite difference time domain (FDTD) method. We detail the fabrication protocol and show the morphological characterization. We also investigate the near-field optical transmission by means of scanning near-field optical microscope measurements, which reveal the excitation of a localized surface plasmon resonance at a wavelength of 633 nm, as expected by the FDTD calculations. Such results highlight how the final device can pave the way for the realization of a single optical platform where the active material and the metal nanostructures are integrated together on the same chip.

Localized surface plasmon resonances in gold nano-patches on a gallium nitride substrate

DE VITTORIO, Massimo;
2012-01-01

Abstract

In this paper we describe the design, fabrication and characterization of gold nano-patches, deposited on gallium nitride substrate, acting as optical nanoantennas able to efficiently localize the electric field at the metal-dielectric interface. We analyse the performance of the proposed device, evaluating the transmission and the electric field localization by means of a three-dimensional finite difference time domain (FDTD) method. We detail the fabrication protocol and show the morphological characterization. We also investigate the near-field optical transmission by means of scanning near-field optical microscope measurements, which reveal the excitation of a localized surface plasmon resonance at a wavelength of 633 nm, as expected by the FDTD calculations. Such results highlight how the final device can pave the way for the realization of a single optical platform where the active material and the metal nanostructures are integrated together on the same chip.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/378757
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact