In this research we have fabricated and tested Au/Dy2O3 composites for applications as Solid Oxide Fuel Cell (SOFC) electrocatalysts. The material was obtained by a process involving electrodeposition of a Au-Dy alloy from a urea/choline chloride ionic liquid electrolyte, followed by selective oxidation of Dy to Dy2O3 in air at high temperature. The electrochemical kinetics of the electrodeposition bath were studied by cyclic voltammetry, whence optimal electrodeposition conditions were identified. The heat-treated material was characterised from the morphological (scanning electron microscopy), compositional (X-ray fluorescence spectroscopy) and structural (X-ray diffractometry) points of view. The electrocatalytic activity towards H2 oxidation and O2 reduction was tested at 650 °C by electrochemical impedance spectrometry. Our composite electrodes exhibit an anodic activity that compares favourably with the only literature result available at the time of this writing for Dy2O3 and an even better cathodic performance.

Electrodeposition of a Au-Dy2O3 composite solid oxide fuel cell catalyst from eutectic urea/choline chloride ionic liquid

MELE, CLAUDIO;BOZZINI, Benedetto
2012-01-01

Abstract

In this research we have fabricated and tested Au/Dy2O3 composites for applications as Solid Oxide Fuel Cell (SOFC) electrocatalysts. The material was obtained by a process involving electrodeposition of a Au-Dy alloy from a urea/choline chloride ionic liquid electrolyte, followed by selective oxidation of Dy to Dy2O3 in air at high temperature. The electrochemical kinetics of the electrodeposition bath were studied by cyclic voltammetry, whence optimal electrodeposition conditions were identified. The heat-treated material was characterised from the morphological (scanning electron microscopy), compositional (X-ray fluorescence spectroscopy) and structural (X-ray diffractometry) points of view. The electrocatalytic activity towards H2 oxidation and O2 reduction was tested at 650 °C by electrochemical impedance spectrometry. Our composite electrodes exhibit an anodic activity that compares favourably with the only literature result available at the time of this writing for Dy2O3 and an even better cathodic performance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/376250
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact