The electromagnetic characterization of piezoelectric micro-needle antenna sensors for fully non-invasive detection of cancer-related anomalies of the skin is presented. To this end, a full-wave finite-difference time-domain procedure is adopted to analyze the performance of the considered class of devices in terms of circuital characteristics and near-field radiation properties as a function of the curvature radius of the relevant sensing probe. This analysis is, in turn, useful to gain a physical insight into the processes which affect the behavior of the structure and, hence, the accuracy in the detection of possible malignant lesions of the skin. In particular, by using the mentioned modeling approach, an extensive parametric study is carried out to analyze the effect produced on the sensor response by variations of the complex permittivity of the skin due to the presence of anomalous cells and, in this way, obtain useful discrimination diagrams for the heuristic evaluation of the exposure level to the cancer risk.

Non-Invasive Reflectometry-Based Detection of Melanoma by Piezoelectric Micro-Needle Antenna Sensors

LAY EKUAKILLE, Aime;VERGALLO, PATRIZIA;
2013-01-01

Abstract

The electromagnetic characterization of piezoelectric micro-needle antenna sensors for fully non-invasive detection of cancer-related anomalies of the skin is presented. To this end, a full-wave finite-difference time-domain procedure is adopted to analyze the performance of the considered class of devices in terms of circuital characteristics and near-field radiation properties as a function of the curvature radius of the relevant sensing probe. This analysis is, in turn, useful to gain a physical insight into the processes which affect the behavior of the structure and, hence, the accuracy in the detection of possible malignant lesions of the skin. In particular, by using the mentioned modeling approach, an extensive parametric study is carried out to analyze the effect produced on the sensor response by variations of the complex permittivity of the skin due to the presence of anomalous cells and, in this way, obtain useful discrimination diagrams for the heuristic evaluation of the exposure level to the cancer risk.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/375268
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact