Baryons constitute about 4% of our universe, but most of them are missing and we do not know where and in what form they are hidden. This constitute the so-called missing baryon problem. A possibility is that part of these baryons are hidden in galactic halos. We show how the 7-year data obtained by the WMAP satellite may be used to trace the halo of the nearby giant spiral galaxy M31. We detect a temperature asymmetry in the M31 halo along the rotation direction up to about 120 kpc. This could be the first detection of a galactic halo in microwaves and may open a new way to probe hidden baryons in these relatively less studied galactic objects using high accuracy CMB measurements.
CMB as a possible new tool to study the dark baryons in galaxies
DE PAOLIS, Francesco
;INGROSSO, Gabriele;NUCITA, Achille;VETRUGNO, DANIELE;
2012-01-01
Abstract
Baryons constitute about 4% of our universe, but most of them are missing and we do not know where and in what form they are hidden. This constitute the so-called missing baryon problem. A possibility is that part of these baryons are hidden in galactic halos. We show how the 7-year data obtained by the WMAP satellite may be used to trace the halo of the nearby giant spiral galaxy M31. We detect a temperature asymmetry in the M31 halo along the rotation direction up to about 120 kpc. This could be the first detection of a galactic halo in microwaves and may open a new way to probe hidden baryons in these relatively less studied galactic objects using high accuracy CMB measurements.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.