Micropatterning of surfaces is gaining importance in various applications ranging from biosensors to microfluidic and lab-on-a-chip devices, where the control of the surface chemistry is of great importance for the application. In this paper, we introduce a patterning technique of topographical features, which is applicable on different substrates by modifying their surface energy. The textured surface is obtained via polydimethylsiloxane (PDMS) transfer, and the topographical parameters can be systematically tailored by selective treatment with oxygen plasma of either the PDMS stamp, the substrate, or both. Our approach is an alternative technique to create micro- and nanopatterns of various height and shape over a large area on different substrates. The possibility to control cell behavior on different surfaces tailored with this microtransfer patterning approach was also evaluated. The cell culture on patterned surfaces showed the possibility of modulating cell adhesion. Our method is based on simple transfer of silicone elastomeric patterns to the surface, and therefore, it is very simple and fast compared to other complex techniques. These observations could have implications for tissue-scaffold engineering science in areas such as microfluidic devices and control of cell adhesion.

Engineering Transfer of Micro- and Nanometer-Scale Features by Surface Energy Modification

CINGOLANI, Roberto;GIGLI, Giuseppe
2009-01-01

Abstract

Micropatterning of surfaces is gaining importance in various applications ranging from biosensors to microfluidic and lab-on-a-chip devices, where the control of the surface chemistry is of great importance for the application. In this paper, we introduce a patterning technique of topographical features, which is applicable on different substrates by modifying their surface energy. The textured surface is obtained via polydimethylsiloxane (PDMS) transfer, and the topographical parameters can be systematically tailored by selective treatment with oxygen plasma of either the PDMS stamp, the substrate, or both. Our approach is an alternative technique to create micro- and nanopatterns of various height and shape over a large area on different substrates. The possibility to control cell behavior on different surfaces tailored with this microtransfer patterning approach was also evaluated. The cell culture on patterned surfaces showed the possibility of modulating cell adhesion. Our method is based on simple transfer of silicone elastomeric patterns to the surface, and therefore, it is very simple and fast compared to other complex techniques. These observations could have implications for tissue-scaffold engineering science in areas such as microfluidic devices and control of cell adhesion.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/370847
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 22
social impact