In this work we present a time-resolved magneto-luminescence investigation (up to 8 T) of InGaAs V-shaped quantum wires (QWRs) with different In content, as a function of temperature and the applied magnetic field. The states of the wires were investigated by CW PL and quantitatively compared with the results of a numerical solution of the two-dimensional Schrodinger equation. Time-resolved experiments performed in magnetic field at different temperatures indicate the existence of a competition between the electron confinement occurring in deep QWRs at low temperature, and the magnetic confinement prevailing in shallower QWRs.
Time-resolved magneto-optical properties of V-shaped single quantum wires
ANNI, Marco;RINALDI, Rosaria;DE VITTORIO, Massimo;CINGOLANI, Roberto
2000-01-01
Abstract
In this work we present a time-resolved magneto-luminescence investigation (up to 8 T) of InGaAs V-shaped quantum wires (QWRs) with different In content, as a function of temperature and the applied magnetic field. The states of the wires were investigated by CW PL and quantitatively compared with the results of a numerical solution of the two-dimensional Schrodinger equation. Time-resolved experiments performed in magnetic field at different temperatures indicate the existence of a competition between the electron confinement occurring in deep QWRs at low temperature, and the magnetic confinement prevailing in shallower QWRs.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.