Pollution by heavy metals has become one of the most important problems in marine coastal areas as a consequence of anthropogenic inputs. Among metal contaminants, zinc, being considered not very toxic, is sometimes released into the sea in appreciable quantities and its concentration is loosely regulated. In this work we analyzed the effects of a high zinc concentration on the sea urchin Paracentrotus lividus immune system. In particular, after 24 h of zinc treatment, we evaluated coelomocytes morphology and composition as well as the zinc influence on some humoral parameters such as hemolysis, lysozyme-like activity and antibacterial activity on Vibrio alginolyticus. Our results evidenced that the presence of zinc affected both cellular and acellular components of the sea urchin immune system. The P. lividus coelomocytes changed in morphology and number; moreover, the amebocytes changed from a petaloid to a filipodial-like shape and the red spherula cells increased in number. Among the considered humoral effectors lysozyme-like activity and antibacterial activity on V. alginolyticus decreased in short-term to zinc treatment. The modifications in the sea urchin immunological competence might give an early indication of disease susceptibility thus suggesting to consider the examined defence mechanisms as potential biological indicators of metal pollution.

Zinc effect on the sea urchin Paracentrotus lividus immunological competence

PAGLIARA, Patrizia;
2012-01-01

Abstract

Pollution by heavy metals has become one of the most important problems in marine coastal areas as a consequence of anthropogenic inputs. Among metal contaminants, zinc, being considered not very toxic, is sometimes released into the sea in appreciable quantities and its concentration is loosely regulated. In this work we analyzed the effects of a high zinc concentration on the sea urchin Paracentrotus lividus immune system. In particular, after 24 h of zinc treatment, we evaluated coelomocytes morphology and composition as well as the zinc influence on some humoral parameters such as hemolysis, lysozyme-like activity and antibacterial activity on Vibrio alginolyticus. Our results evidenced that the presence of zinc affected both cellular and acellular components of the sea urchin immune system. The P. lividus coelomocytes changed in morphology and number; moreover, the amebocytes changed from a petaloid to a filipodial-like shape and the red spherula cells increased in number. Among the considered humoral effectors lysozyme-like activity and antibacterial activity on V. alginolyticus decreased in short-term to zinc treatment. The modifications in the sea urchin immunological competence might give an early indication of disease susceptibility thus suggesting to consider the examined defence mechanisms as potential biological indicators of metal pollution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/366956
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact