Let $\Omega$ be the support of a probability space and of a metric space. If $T:\Omega\to\Omega$ is weakly mixxing, then for every measurable set $AS$ of strictly positive probability, one has $\limsup \delta(T^nSA)=delta(\Omega)$, where $\delta$ denotes the diameter of of a subset of $\Omega$. This results complements a previous one by Rice for strongly mixing transformations.

On Weakly Mixing Transformation on Metric Spaces

SEMPI, Carlo
1985-01-01

Abstract

Let $\Omega$ be the support of a probability space and of a metric space. If $T:\Omega\to\Omega$ is weakly mixxing, then for every measurable set $AS$ of strictly positive probability, one has $\limsup \delta(T^nSA)=delta(\Omega)$, where $\delta$ denotes the diameter of of a subset of $\Omega$. This results complements a previous one by Rice for strongly mixing transformations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/366440
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact