We propose a technological approach aimed at improving biochips performances, based on an efficient spectral modeling and enhancement of markers fluorescence through the insertion of photonic crystal nanocavities (PhC-NCs) in the readout area of biochips. This strategy univocally associates a specific emission wavelength to a specific bioprobe immobilized on a nanocavity, therefore guaranteeing parallel detection of multiple elements and faster analysis time. Moreover, PhC-NCs significantly enhance the markers fluorescence, thus improving the detection sensitivity.
Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips
CINGOLANI, Roberto;DE VITTORIO, Massimo;
2010-01-01
Abstract
We propose a technological approach aimed at improving biochips performances, based on an efficient spectral modeling and enhancement of markers fluorescence through the insertion of photonic crystal nanocavities (PhC-NCs) in the readout area of biochips. This strategy univocally associates a specific emission wavelength to a specific bioprobe immobilized on a nanocavity, therefore guaranteeing parallel detection of multiple elements and faster analysis time. Moreover, PhC-NCs significantly enhance the markers fluorescence, thus improving the detection sensitivity.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.