In this work, we report on the fabrication and characterization of stress-driven aluminum nitride (AlN) cantilevers to be applied as flow sensor for fish lateral line system. The fabricated structures exploit a multilayered cantilever AlN/molybdenum (Mo) and a Nichrome 80/20 alloy as piezoresistor. Cantilever arrays are realized by using conventional micromachining techniques involving optical lithography and etching processes. The fabrication of the piezoresistive cantilevers is reported and the operation of the cantilever as flow sensor has been investigated by electrical measurement under nitrogen flowing condition showing a sensitivity to directionality and to low value applied forces.

Stress-driven AlN cantilever-based flow sensor for fish lateral line system

CINGOLANI, Roberto;DE VITTORIO, Massimo
2011-01-01

Abstract

In this work, we report on the fabrication and characterization of stress-driven aluminum nitride (AlN) cantilevers to be applied as flow sensor for fish lateral line system. The fabricated structures exploit a multilayered cantilever AlN/molybdenum (Mo) and a Nichrome 80/20 alloy as piezoresistor. Cantilever arrays are realized by using conventional micromachining techniques involving optical lithography and etching processes. The fabrication of the piezoresistive cantilevers is reported and the operation of the cantilever as flow sensor has been investigated by electrical measurement under nitrogen flowing condition showing a sensitivity to directionality and to low value applied forces.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/365839
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 42
social impact