The rigorous characterization of ultrahigh-frequency passive radio-frequency identification (RFID) tags is a challenging but mandatory task. Indeed, tags are the most critical devices in RFID systems: their performance should be adequately good, although stringent requirements in terms of compactness, used materials, and costs must be satisfied. Factors such as the goodness of the conjugate impedance matching between the chip and the antenna, the chip sensitivity, and the quality of the backscattered signal affect tag performance. Tag sensitivity and differential radar cross section (RCS) are the most significant metrics for tag characterization: they define the forward (from the reader to the tag) and the backward (from the tag to the reader) link reliability, respectively. Nevertheless, measurement of such metrics cannot be approached with conventional methods based on vector network analyzers or conventional RFID readers. Vice versa, commercially available instrumentation and solutions are very expensive and not totally flexible. In this paper, a novel approach for performance characterization of RFID tags is explored. To this end, we developed a very cheap (below $1000) and flexible tool based on software-defined radio, which enables measurement of tag sensitivity and differential RCS. An exhaustive experimental campaign has been carried out on ten commercial and four built-in laboratory RFID tags. Achieved results demonstrate the flexibility, accuracy, and appropriateness of the proposed approach.

A Cost-Effective SDR Platform for Performance Characterization of RFID Tags

CATARINUCCI, Luca;DE DONNO, DANILO;COLELLA, RICCARDO;RICCIATO, FABIO;TARRICONE, Luciano
2012-01-01

Abstract

The rigorous characterization of ultrahigh-frequency passive radio-frequency identification (RFID) tags is a challenging but mandatory task. Indeed, tags are the most critical devices in RFID systems: their performance should be adequately good, although stringent requirements in terms of compactness, used materials, and costs must be satisfied. Factors such as the goodness of the conjugate impedance matching between the chip and the antenna, the chip sensitivity, and the quality of the backscattered signal affect tag performance. Tag sensitivity and differential radar cross section (RCS) are the most significant metrics for tag characterization: they define the forward (from the reader to the tag) and the backward (from the tag to the reader) link reliability, respectively. Nevertheless, measurement of such metrics cannot be approached with conventional methods based on vector network analyzers or conventional RFID readers. Vice versa, commercially available instrumentation and solutions are very expensive and not totally flexible. In this paper, a novel approach for performance characterization of RFID tags is explored. To this end, we developed a very cheap (below $1000) and flexible tool based on software-defined radio, which enables measurement of tag sensitivity and differential RCS. An exhaustive experimental campaign has been carried out on ten commercial and four built-in laboratory RFID tags. Achieved results demonstrate the flexibility, accuracy, and appropriateness of the proposed approach.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/363163
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? 58
social impact