Scenario climate projections for extreme marine storms producing storm surges and wind waves are very important for the northern flat coast of the Adriatic Sea, where the area at risk includes a unique cultural and environmental heritage, and important economic activities. This study uses a shallow water model and a spectral wave model for computing the storm surge and the wind wave field, respectively, from the sea level pressure and wind fields that have been computed by the RegCM regional climate model. Simulations cover the period 1961–1990 for the present climate (control simulations) and the period 2071–2100 for the A2 and B2 scenarios. Generalized Extreme Value analysis is used for estimating values for the 10 and 100 year return times. The adequacy of these modeling tools for a reliable estimation of the climate change signal, without needing further downscaling is shown. However, this study has mainly a methodological value, because issues such as interdecadal variability and intermodel variability cannot be addressed, since the analysis is based on single model 30-year long simulations. The control simulation looks reasonably accurate for extreme value analysis, though it overestimates/underestimates the frequency of high/low surge and wind wave events with respect to observations. Scenario simulations suggest higher frequency of intense storms for the B2 scenario, but not for the A2. Likely, these differences are not the effect of climate change, but of climate multidecadal variability. Extreme storms are stronger in future scenarios, but differences are not statistically significant. Therefore this study does not provide convincing evidence for more stormy conditions in future scenarios.

Extreme storm surge and wind wave climate scenario simulations at the Venetian littoral

LIONELLO, Piero;
2012-01-01

Abstract

Scenario climate projections for extreme marine storms producing storm surges and wind waves are very important for the northern flat coast of the Adriatic Sea, where the area at risk includes a unique cultural and environmental heritage, and important economic activities. This study uses a shallow water model and a spectral wave model for computing the storm surge and the wind wave field, respectively, from the sea level pressure and wind fields that have been computed by the RegCM regional climate model. Simulations cover the period 1961–1990 for the present climate (control simulations) and the period 2071–2100 for the A2 and B2 scenarios. Generalized Extreme Value analysis is used for estimating values for the 10 and 100 year return times. The adequacy of these modeling tools for a reliable estimation of the climate change signal, without needing further downscaling is shown. However, this study has mainly a methodological value, because issues such as interdecadal variability and intermodel variability cannot be addressed, since the analysis is based on single model 30-year long simulations. The control simulation looks reasonably accurate for extreme value analysis, though it overestimates/underestimates the frequency of high/low surge and wind wave events with respect to observations. Scenario simulations suggest higher frequency of intense storms for the B2 scenario, but not for the A2. Likely, these differences are not the effect of climate change, but of climate multidecadal variability. Extreme storms are stronger in future scenarios, but differences are not statistically significant. Therefore this study does not provide convincing evidence for more stormy conditions in future scenarios.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/361967
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? ND
social impact