The aim of this paper is to analyze a Job Satisfaction (JS) model by using an information theoretic approach based on the semi-parametric Generalized Maximum Entropy (GME) estimator. The GME is used in order to estimate the parameters of the Structural Equation Model (SEM), which represents the theoretical representation of the relationships between the human being and his job. Moreover, thanks to the entropy index measure, the theoretical model is analyzed in its some particular aspects, which can be seen as sub-structures in the relationships.
An Information Theoretic Job Satisfaction Analysis
CIAVOLINO, Enrico
2011-01-01
Abstract
The aim of this paper is to analyze a Job Satisfaction (JS) model by using an information theoretic approach based on the semi-parametric Generalized Maximum Entropy (GME) estimator. The GME is used in order to estimate the parameters of the Structural Equation Model (SEM), which represents the theoretical representation of the relationships between the human being and his job. Moreover, thanks to the entropy index measure, the theoretical model is analyzed in its some particular aspects, which can be seen as sub-structures in the relationships.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.