We show the design, development and assessment of disposable, biocompatible, fully plastic microreactors, which are demonstrated to be highly efficient for genomic analyses, such as amplification of DNA, quantitative analyses in real time, multiplex PCR (both in terms of efficiency and selectivity), as compared to conventional laboratory equipment for PCR. The plastic microreactors can easily be coupled to reusable hardware, enabling heating/cooling processes and, in the case of qPCR applications, the real-time detection of the signal from a suitable fluorescent reporter present in the reaction mixture during the analysis. The low cost production of these polymeric microreactors, along with their applicability to a wide range of biochemical targets, may open new perspectives towards practical applications of biochips for point of care diagnostics.
Disposable plastic microreactors for genomic analyses
POMPA, Pier Paolo;MARUCCIO, Giuseppe;CINGOLANI, Roberto;RINALDI, Rosaria
2009-01-01
Abstract
We show the design, development and assessment of disposable, biocompatible, fully plastic microreactors, which are demonstrated to be highly efficient for genomic analyses, such as amplification of DNA, quantitative analyses in real time, multiplex PCR (both in terms of efficiency and selectivity), as compared to conventional laboratory equipment for PCR. The plastic microreactors can easily be coupled to reusable hardware, enabling heating/cooling processes and, in the case of qPCR applications, the real-time detection of the signal from a suitable fluorescent reporter present in the reaction mixture during the analysis. The low cost production of these polymeric microreactors, along with their applicability to a wide range of biochemical targets, may open new perspectives towards practical applications of biochips for point of care diagnostics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.