An associative ring R, not necessarily with an identity element, is called semilocal if R modulo its Jacobson radical is an artinian ring. It is proved that if the adjoint group of a semilocal ring R is locally supersoluble, then R is locally Lie supersoluble and its Jacobson radical is contained in a locally Lie nilpotent ideal of finite index in R.

Semilocal rings whose adjoint group is locally supersoluble

CATINO, Francesco;MICCOLI, Maria Maddalena;
2010-01-01

Abstract

An associative ring R, not necessarily with an identity element, is called semilocal if R modulo its Jacobson radical is an artinian ring. It is proved that if the adjoint group of a semilocal ring R is locally supersoluble, then R is locally Lie supersoluble and its Jacobson radical is contained in a locally Lie nilpotent ideal of finite index in R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/342065
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact