SCOPUS eid=2-s2.0-74549178470 - The quality of products and processes is more and more often becoming related to functional data, which refer to information summarised in the form of profiles. The recent literature has pointed out that traditional control charting methods cannot be directly applied in these cases and new approaches for profile monitoring are required. While many different profile monitoring approaches have been proposed in the scientific literature, few comparison studies are available. This paper aims at filling this gap by comparing three representative profile monitoring approaches in different production scenarios. The performance comparison will allow us to select a specific approach in a given situation. The competitor approaches are chosen to represent different levels of complexity, as well as different types of modelling approaches. In particular, at a lower level of complexity, the 'location control chart' (where the upper and lower control limits are +/-K standard deviations from the sample mean at each profile location) is considered to be representative of industrial practice. At a higher complexity level, approaches based on combining a parametric model of functional data with multivariate and univariate control charting are considered. Within this second class, we analyse two different approaches. The first is based on regression and the second focuses on using principal component analysis for modelling functional data. A manufacturing reference case study is used throughout the paper, namely profiles measured on machined items subject to geometrical specification (roundness).

A comparison study of control charts for statistical monitoring of functional data

PACELLA, Massimo
2010-01-01

Abstract

SCOPUS eid=2-s2.0-74549178470 - The quality of products and processes is more and more often becoming related to functional data, which refer to information summarised in the form of profiles. The recent literature has pointed out that traditional control charting methods cannot be directly applied in these cases and new approaches for profile monitoring are required. While many different profile monitoring approaches have been proposed in the scientific literature, few comparison studies are available. This paper aims at filling this gap by comparing three representative profile monitoring approaches in different production scenarios. The performance comparison will allow us to select a specific approach in a given situation. The competitor approaches are chosen to represent different levels of complexity, as well as different types of modelling approaches. In particular, at a lower level of complexity, the 'location control chart' (where the upper and lower control limits are +/-K standard deviations from the sample mean at each profile location) is considered to be representative of industrial practice. At a higher complexity level, approaches based on combining a parametric model of functional data with multivariate and univariate control charting are considered. Within this second class, we analyse two different approaches. The first is based on regression and the second focuses on using principal component analysis for modelling functional data. A manufacturing reference case study is used throughout the paper, namely profiles measured on machined items subject to geometrical specification (roundness).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/337560
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 46
social impact