The magnetic configuration of a nanostructure can be altered by an external magnetic field, by spin-transfer torque or by its magnetoelastic response. Here, we explore an alternative route, namely the possibility of switching the sign of the exchange coupling between two magnetic centres by means of an electric potential. This general effect, which we name electrostatic spin crossover, occurs in insulating molecules with super-exchange magnetic interaction and inversion symmetry breaking. As an example we present the case of a family of di-cobaltocene-based molecules. The critical fields for switching, calculated from first principles, are of the order of 1 V nm-1 and can be achieved in two-terminal devices. More crucially, such critical fields can be engineered with an appropriate choice of substituents to add to the basic di-cobaltocene unit. This suggests that an easy chemical strategy for achieving the synthesis of suitable molecules is possible.

Electrostatic spin crossover effect in polar magnetic molecules

MARUCCIO, Giuseppe;
2009-01-01

Abstract

The magnetic configuration of a nanostructure can be altered by an external magnetic field, by spin-transfer torque or by its magnetoelastic response. Here, we explore an alternative route, namely the possibility of switching the sign of the exchange coupling between two magnetic centres by means of an electric potential. This general effect, which we name electrostatic spin crossover, occurs in insulating molecules with super-exchange magnetic interaction and inversion symmetry breaking. As an example we present the case of a family of di-cobaltocene-based molecules. The critical fields for switching, calculated from first principles, are of the order of 1 V nm-1 and can be achieved in two-terminal devices. More crucially, such critical fields can be engineered with an appropriate choice of substituents to add to the basic di-cobaltocene unit. This suggests that an easy chemical strategy for achieving the synthesis of suitable molecules is possible.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/337362
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 144
  • ???jsp.display-item.citation.isi??? 144
social impact