We report on the fabrication and optical characterization of vertical hybrid microcavities in which a layer of colloidal nanocrystals dispersed in an organic matrix is embedded between two inorganic mirrors. The devices are fabricated by a technique based on the unconventional use of the hot embossing technology, which allows a very fine control of the cavity length. The technique exploits a λ -thick microstructured dielectric top mirror pressed onto the bottom one, previously coated with the active layer, to sandwich the cavity and precisely control its thickness. Room-temperature photoluminescence measurements show a Q factor as high as 146 for our devices.

High Q-factor colloidal nanocrystals based vertical microcavity by hot embossing technology

CINGOLANI, Roberto;DE VITTORIO, Massimo
2006-01-01

Abstract

We report on the fabrication and optical characterization of vertical hybrid microcavities in which a layer of colloidal nanocrystals dispersed in an organic matrix is embedded between two inorganic mirrors. The devices are fabricated by a technique based on the unconventional use of the hot embossing technology, which allows a very fine control of the cavity length. The technique exploits a λ -thick microstructured dielectric top mirror pressed onto the bottom one, previously coated with the active layer, to sandwich the cavity and precisely control its thickness. Room-temperature photoluminescence measurements show a Q factor as high as 146 for our devices.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/333592
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact