In this work reactive pulsed laser deposition of molybdenum- and tungsten-nitride thin films is investigated. Metallic targets were ablated in low-pressure (1, 10 and 100 Pa) nitrogen atmosphere by KrF excimer laser pulses (fluence ~6.5 J/cm2). Films were deposited on silicon wafers heated to ~25, 250 and 500 8C. The characteristics of the films strongly depend on the N2 pressure. By increasing N2 pressure, the nitrogen content increases in the films, which leads to a monotonous increase of the electrical resistivity. Deposition rate decreases at 100 Pa as indicated by Rutherford backscattering spectrometry. At this pressure, hardness of the films significantly decreases also, as shown by microhardness measurements. X-ray diffractometry shows that films crystallinity is improved by increasing the substrate temperature. In addition, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were applied for visualising the film surface.

Reactive pulsed laser deposition of thin molybdenum- and tungsten-nitride films

CARICATO, Anna Paola;
2005-01-01

Abstract

In this work reactive pulsed laser deposition of molybdenum- and tungsten-nitride thin films is investigated. Metallic targets were ablated in low-pressure (1, 10 and 100 Pa) nitrogen atmosphere by KrF excimer laser pulses (fluence ~6.5 J/cm2). Films were deposited on silicon wafers heated to ~25, 250 and 500 8C. The characteristics of the films strongly depend on the N2 pressure. By increasing N2 pressure, the nitrogen content increases in the films, which leads to a monotonous increase of the electrical resistivity. Deposition rate decreases at 100 Pa as indicated by Rutherford backscattering spectrometry. At this pressure, hardness of the films significantly decreases also, as shown by microhardness measurements. X-ray diffractometry shows that films crystallinity is improved by increasing the substrate temperature. In addition, atomic force microscopy (AFM) and scanning electron microscopy (SEM) were applied for visualising the film surface.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/333337
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 43
social impact