A new method based on 3D multiridge analysis of potential fields assumes a 3D subset in the harmonic region and studies the behavior of potential field ridges, which are built by joining extreme points of the analyzed field computed at different altitudes. Three types of ridges are formed by searching for the zeros of the first horizontal and first vertical derivatives of the potential field _types I and II, respectively_ and the zeros of the potential field itself _type III_. This method uses a redundant set of ridges, called a multiridge set, to determine source type and location. For homogeneous potential fields generated by simple sources, all of the ridges are straight lines converging to the source position. This method analyzes the multiridges by using a geometric criterion to find the source position at the intersection of the multiridge set and by solving the three reduced Euler equations associated with ridge types I, II, and III. The reduced Euler type I and II equations are used to obtain the structural index and the vertical and horizontal source positions; equation type III estimates the horizontal and vertical source positions. Tests on synthetic as well as the Bishop model field yield good results even with noise-corrupted data. Results obtained using magnetic data collected over the wreck of a military ship in the Tyrrhenian Sea successfully determine its vertical and horizontal positions and the structural index.
Multiridge Analysis of Potential Fields: Geometrical Method and Reduced Euler Deconvolution
QUARTA, Tatiana Anna Maria
2009-01-01
Abstract
A new method based on 3D multiridge analysis of potential fields assumes a 3D subset in the harmonic region and studies the behavior of potential field ridges, which are built by joining extreme points of the analyzed field computed at different altitudes. Three types of ridges are formed by searching for the zeros of the first horizontal and first vertical derivatives of the potential field _types I and II, respectively_ and the zeros of the potential field itself _type III_. This method uses a redundant set of ridges, called a multiridge set, to determine source type and location. For homogeneous potential fields generated by simple sources, all of the ridges are straight lines converging to the source position. This method analyzes the multiridges by using a geometric criterion to find the source position at the intersection of the multiridge set and by solving the three reduced Euler equations associated with ridge types I, II, and III. The reduced Euler type I and II equations are used to obtain the structural index and the vertical and horizontal source positions; equation type III estimates the horizontal and vertical source positions. Tests on synthetic as well as the Bishop model field yield good results even with noise-corrupted data. Results obtained using magnetic data collected over the wreck of a military ship in the Tyrrhenian Sea successfully determine its vertical and horizontal positions and the structural index.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.