Let $K$ be an infinite field of characteristic different from 2, and $G$ a group. Under suitable restrictions upon $G$, we classify the groups such that the symmetric units of $KG$ satisfy the solvability identity $(x_1,x_2,\ldots,x_{2^n})^o=1$, for some $n$.
Group rings whose symmetric unitsare solvable
SPINELLI, Ernesto
2009-01-01
Abstract
Let $K$ be an infinite field of characteristic different from 2, and $G$ a group. Under suitable restrictions upon $G$, we classify the groups such that the symmetric units of $KG$ satisfy the solvability identity $(x_1,x_2,\ldots,x_{2^n})^o=1$, for some $n$.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.