Let $KG$ be a non-commutative Lie nilpotent group algebra of a group $G$ over a field $K$. It is known that the Lie nilpotency index of $KG$ is at most $|G'|+1$, where $|G'|$ is the order of the commutator subgroup of $G$. In [V. Bovdi, E. Spinelli: \emph{Modular group algebras with maximal Lie nilpotency indices}, Publ. Math. Debrecen, 65 (2004), 243-252] the groups $G$ for which this index is maximal were determined. Here we list the $G$'s for which it assumes the next highest possible value.

Group algebras with almost maximal Lie nilpotency index

SPINELLI, Ernesto
2005-01-01

Abstract

Let $KG$ be a non-commutative Lie nilpotent group algebra of a group $G$ over a field $K$. It is known that the Lie nilpotency index of $KG$ is at most $|G'|+1$, where $|G'|$ is the order of the commutator subgroup of $G$. In [V. Bovdi, E. Spinelli: \emph{Modular group algebras with maximal Lie nilpotency indices}, Publ. Math. Debrecen, 65 (2004), 243-252] the groups $G$ for which this index is maximal were determined. Here we list the $G$'s for which it assumes the next highest possible value.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/331123
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact