In this paper, it is shown that any projective plane Π of order n ≤ q^4, q odd, that admits a group G ≅ PSL(3, q) as a collineation group contains a G-invariant Desarguesian subplane of order q. Moreover, the involutions and suitable p-elements in G are homologies and elations of Π, respectively. In particular, if n ≤ q^3, actually, n = q, q^2 or q^3.

On the finite projective planes of order up to q^4, q odd, admitting PSL(3,q) as a collineation group

BILIOTTI, Mauro;MONTINARO, Alessandro
2008-01-01

Abstract

In this paper, it is shown that any projective plane Π of order n ≤ q^4, q odd, that admits a group G ≅ PSL(3, q) as a collineation group contains a G-invariant Desarguesian subplane of order q. Moreover, the involutions and suitable p-elements in G are homologies and elations of Π, respectively. In particular, if n ≤ q^3, actually, n = q, q^2 or q^3.
File in questo prodotto:
File Dimensione Formato  
M22.pdf

solo utenti autorizzati

Descrizione: articolo
Tipologia: Versione editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 229.78 kB
Formato Adobe PDF
229.78 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/329470
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact