We report a theoretical study on the optical properties of bithiophene and terthiophene N-succinimidyl esters, which have been functionalized with a methylsulfanyl group in the a or the beta positions. Time-dependent density functional theory (TD-DFT) and approximate coupled-cluster singles and doubles with the resolution of identity technique (RI-CC2) calculations have been performed in the ground and excited states. The RI-CC2 results for absorption and fluorescence energies are in better qualitative agreement with experiments, whereas TD-DFT does not correctly describe the higher energy part of the absorption spectra of beta-substituted bithiophenes, due to the presence of charge-transfer states. Systems functionalized at the a position show a large red-shift of the main absorption and fluorescence band and a larger Stokes-shift compared to the unsubstituted species. These effects are in most cases less pronounced for the beta-substituted structures. In particular, we found that the Stokes-shift of the alpha-substituted structures is larger than the one of the beta-substituted species due to a more planar orientation of the methylsulfanyl group with respect to the neighbouring thiophene in the excited state.

Theoretical study on oligothiophene N-succinimidyl esters: size and push-pull effects

GIGLI, Giuseppe;
2008-01-01

Abstract

We report a theoretical study on the optical properties of bithiophene and terthiophene N-succinimidyl esters, which have been functionalized with a methylsulfanyl group in the a or the beta positions. Time-dependent density functional theory (TD-DFT) and approximate coupled-cluster singles and doubles with the resolution of identity technique (RI-CC2) calculations have been performed in the ground and excited states. The RI-CC2 results for absorption and fluorescence energies are in better qualitative agreement with experiments, whereas TD-DFT does not correctly describe the higher energy part of the absorption spectra of beta-substituted bithiophenes, due to the presence of charge-transfer states. Systems functionalized at the a position show a large red-shift of the main absorption and fluorescence band and a larger Stokes-shift compared to the unsubstituted species. These effects are in most cases less pronounced for the beta-substituted structures. In particular, we found that the Stokes-shift of the alpha-substituted structures is larger than the one of the beta-substituted species due to a more planar orientation of the methylsulfanyl group with respect to the neighbouring thiophene in the excited state.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/327893
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact