Colloidal semiconductor-magnetic hybrid nanocrystals with topologically controlled composition are fabricated by heterogeneous nucleation of spherical E-Co domains onto anatase TiO2 nanorods. The latter can be selectively decorated at either their tips or at multiple locations along their longitudinal sidewalls, forming lattice-matched heterointerfaces regardless of the metal deposition sites. The possibility of switching between either heterostructure growth modes arises from the facet-dependent chemical reactivity of the oxide seeds, which is governed mainly by selective adhesion of the surfactants rather than by small differences in misfit-induced interfacial strain at the relevant junction points.

Topologically Controlled Growth of Magnetic-Metal-Functionalized Semiconductor Oxide Nanorods

CASAVOLA, MARIANNA;CINGOLANI, Roberto;COZZOLI, Pantaleo Davide
2007-01-01

Abstract

Colloidal semiconductor-magnetic hybrid nanocrystals with topologically controlled composition are fabricated by heterogeneous nucleation of spherical E-Co domains onto anatase TiO2 nanorods. The latter can be selectively decorated at either their tips or at multiple locations along their longitudinal sidewalls, forming lattice-matched heterointerfaces regardless of the metal deposition sites. The possibility of switching between either heterostructure growth modes arises from the facet-dependent chemical reactivity of the oxide seeds, which is governed mainly by selective adhesion of the surfactants rather than by small differences in misfit-induced interfacial strain at the relevant junction points.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/327293
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 149
  • ???jsp.display-item.citation.isi??? 147
social impact