Functional relationships linking at λ0=351 nm aerosol extinction αλ0aer and backscatter coefficient βλ0aer of maritime and desert type aerosols are determined to allow for inversion of the single-wavelength lidar signals. Such relationships are derived as mean behavior of 20,000 extinction versus backscatter computations, performed for aerosol size distributions and compositions whose describing parameters are randomly chosen within the naturally observed variability. For desert-type aerosols, the effect of the particle non-sphericity is considered and it is shown that the extinction to backscatter ratio of non-spherical dust particles can be up to 60% larger than the values obtained for spherical particles. Aerosol extinction and backscatter coefficient profiles obtained inverting the single-wavelength lidar signal with the modeled relationships are then compared to the same profiles measured by a combined elastic-Raman lidar operating at 351 nm. Analytical back trajectories and satellite images are used to characterize advection patterns during lidar measurements and to properly choose the modeled functional relationship. A good accordance between the two techniques is found for advection patterns over the lidar site typical of maritime and dust conditions. Maximum differences between the model-based αλ0aer and βλ0aer vertical profiles and the corresponding ones measured by the combined elastic-Raman lidar technique are of 30% and 40% in maritime and desert dust conditions, respectively. The comparison of elastic-Raman lidar measurements and model-based results also reveals that particle non-sphericity must be taken into account when mineral dust-type aerosols are directly advected over the measurement site.

Extinction versus backscatter relationships for lidar applications at 351 nm: maritime and desert aerosol simulations and comparison with observations

DE TOMASI, Ferdinando;PERRONE, Maria Rita;TAFURO, Anna Maria
2004-01-01

Abstract

Functional relationships linking at λ0=351 nm aerosol extinction αλ0aer and backscatter coefficient βλ0aer of maritime and desert type aerosols are determined to allow for inversion of the single-wavelength lidar signals. Such relationships are derived as mean behavior of 20,000 extinction versus backscatter computations, performed for aerosol size distributions and compositions whose describing parameters are randomly chosen within the naturally observed variability. For desert-type aerosols, the effect of the particle non-sphericity is considered and it is shown that the extinction to backscatter ratio of non-spherical dust particles can be up to 60% larger than the values obtained for spherical particles. Aerosol extinction and backscatter coefficient profiles obtained inverting the single-wavelength lidar signal with the modeled relationships are then compared to the same profiles measured by a combined elastic-Raman lidar operating at 351 nm. Analytical back trajectories and satellite images are used to characterize advection patterns during lidar measurements and to properly choose the modeled functional relationship. A good accordance between the two techniques is found for advection patterns over the lidar site typical of maritime and dust conditions. Maximum differences between the model-based αλ0aer and βλ0aer vertical profiles and the corresponding ones measured by the combined elastic-Raman lidar technique are of 30% and 40% in maritime and desert dust conditions, respectively. The comparison of elastic-Raman lidar measurements and model-based results also reveals that particle non-sphericity must be taken into account when mineral dust-type aerosols are directly advected over the measurement site.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/301049
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact