D.M. Riley proved in [3] that, if A and B are either Lie nilpotent or Lie metabelian algebras, then their tensor product $A\otimes B$ is Lie soluble and obtained bounds on the Lie derived length of $A\otimes B$. The aim of the present note is to improve Riley's bounds; moreover we consider also the cases in which A and B are either strongly Lie soluble or strong Lie nilpotent algebras.

A note on the tensor product of Lie soluble algebras

CATINO, Francesco;MICCOLI, Maria Maddalena;NUCCIO, CLAUDIA
2007-01-01

Abstract

D.M. Riley proved in [3] that, if A and B are either Lie nilpotent or Lie metabelian algebras, then their tensor product $A\otimes B$ is Lie soluble and obtained bounds on the Lie derived length of $A\otimes B$. The aim of the present note is to improve Riley's bounds; moreover we consider also the cases in which A and B are either strongly Lie soluble or strong Lie nilpotent algebras.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/300841
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact