An associative ring R, not necessarily with an identity, is called radical if it coincides with its Jacobson radical, which means that the set of all elements of R forms a group denoted by R° under the circle operation r o s=r+s+rs on R. It is proved that every soluble normal subgroup of the adjoint group R° of a semiprime radical ring R is contained in the centre of R.

On the adjoint group of semiprime rings

CATINO, Francesco;MICCOLI, Maria Maddalena;
2007-01-01

Abstract

An associative ring R, not necessarily with an identity, is called radical if it coincides with its Jacobson radical, which means that the set of all elements of R forms a group denoted by R° under the circle operation r o s=r+s+rs on R. It is proved that every soluble normal subgroup of the adjoint group R° of a semiprime radical ring R is contained in the centre of R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/300839
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact