A thermophotovoltaic (TPV) generator for electric vehicles has been designed and developed. In this paper we focus on the combustion system and the heat regenerator. The system has been designed to work as a range extender for electric vehicles. This solution would provide energy always available on the vehicle, which would run even if the battery level were low. Several configurations for the burner and for the heat exchanger have been investigated and a comparison of these is presented. The different solutions have been studied both theoretically and experimentally. In this paper, we report on the work carried out to build a TPV device capable of yielding 6 kW of electric power to recharge the battery pack of an electric city-car. The project has been divided into four steps: (1) pre-design of different configurations of the burner and heat exchanger using non-commercial software ‘TPV Design Tool 1.0’; (2) testing of the pre-designed generators with a CFD code (Fluent 6); (3) testing of the chosen configurations on the experimental bench to validate the results from CFD simulations and to highlight technological limits of the chosen configurations; (4) selection of the best configuration. After the design and testing of the devices, a two-burner modular configuration has been proven to be a good compromise between the geometric constraints and the objectives of the project. The designed generator is relatively compact and light with good efficiency and emissions performance.

New Approaches to the Design of the Combustion System for Thermophotovoltaic Applications

COLANGELO, Gianpiero;DE RISI, Arturo;LAFORGIA, Domenico
2003-01-01

Abstract

A thermophotovoltaic (TPV) generator for electric vehicles has been designed and developed. In this paper we focus on the combustion system and the heat regenerator. The system has been designed to work as a range extender for electric vehicles. This solution would provide energy always available on the vehicle, which would run even if the battery level were low. Several configurations for the burner and for the heat exchanger have been investigated and a comparison of these is presented. The different solutions have been studied both theoretically and experimentally. In this paper, we report on the work carried out to build a TPV device capable of yielding 6 kW of electric power to recharge the battery pack of an electric city-car. The project has been divided into four steps: (1) pre-design of different configurations of the burner and heat exchanger using non-commercial software ‘TPV Design Tool 1.0’; (2) testing of the pre-designed generators with a CFD code (Fluent 6); (3) testing of the chosen configurations on the experimental bench to validate the results from CFD simulations and to highlight technological limits of the chosen configurations; (4) selection of the best configuration. After the design and testing of the devices, a two-burner modular configuration has been proven to be a good compromise between the geometric constraints and the objectives of the project. The designed generator is relatively compact and light with good efficiency and emissions performance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/300448
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 24
social impact