Laser-induced plasmas are transient systems rapidly aging in few nanoseconds of evolution. Time-of-flight spectrometry allowed studying initial plasma characteristics based on frozen translational degrees of freedom, hence overcoming intrinsic limitations of optical spectroscopy. Experimental ion velocity distributions were reconstructed as developed during the longitudinal plasma expansion. The obtained onset plasma temperatures are in the range of 18–45 eV depending on the ablated metals. Also the ion angular spreads were found to be a function of ablated metal, e.g., the narrowest for Fe, the broadest for Al, due to different collisional coupling in the plasma population.
Laser-induced plasmas from the ablation of metal targets: the problem of the onset temperature, and insights on the expansion dynamics
NASSISI, Vincenzo
2007-01-01
Abstract
Laser-induced plasmas are transient systems rapidly aging in few nanoseconds of evolution. Time-of-flight spectrometry allowed studying initial plasma characteristics based on frozen translational degrees of freedom, hence overcoming intrinsic limitations of optical spectroscopy. Experimental ion velocity distributions were reconstructed as developed during the longitudinal plasma expansion. The obtained onset plasma temperatures are in the range of 18–45 eV depending on the ablated metals. Also the ion angular spreads were found to be a function of ablated metal, e.g., the narrowest for Fe, the broadest for Al, due to different collisional coupling in the plasma population.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.