A lumped parameter model of open-frame unmanned underwater vehicles (UUV's) including the effects of propeller-hull and propeller-propeller interactions is presented. The identification of the model parameters consists of a least squares method using only on-board sensor data without requiring any towing tank tests. The identification scheme is based on separate tests for the estimation of drag and thruster installation coefficients, taking into account propeller-hull and propeller-propeller effects first and inertia parameters subsequently. The scheme has been experimentally implemented on ROMEO, the latest UUV developed by CNR-IAN. Experimental results show both the effectiveness of the proposed method and the relevance of the propeller-hull and propeller-propeller interactions that are usually neglected in standard UUV models.
Titolo: | Modeling and identification of open-frame variable configuration unmanned underwater vehicles |
Autori: | |
Data di pubblicazione: | 2000 |
Rivista: | |
Abstract: | A lumped parameter model of open-frame unmanned underwater vehicles (UUV's) including the effects of propeller-hull and propeller-propeller interactions is presented. The identification of the model parameters consists of a least squares method using only on-board sensor data without requiring any towing tank tests. The identification scheme is based on separate tests for the estimation of drag and thruster installation coefficients, taking into account propeller-hull and propeller-propeller effects first and inertia parameters subsequently. The scheme has been experimentally implemented on ROMEO, the latest UUV developed by CNR-IAN. Experimental results show both the effectiveness of the proposed method and the relevance of the propeller-hull and propeller-propeller interactions that are usually neglected in standard UUV models. |
Handle: | http://hdl.handle.net/11587/109324 |
Appare nelle tipologie: | Articolo pubblicato su Rivista |