Different types of cyclodextrins (CDs) have been tested as mediators for the water phase transfer of organic-capped CdS nanocrystals (NCs), and alpha CD has been demonstrated to be the most effective system. The formation of a complex based on alpha CDs and colloidal NCs has been considered to be responsible for the phase transfer process and extensively investigated by optical, structural, and calorimetric measurements, as a function of the experimental parameters (pH and NC and CD concentration). A mechanism for the complexation phenomena has been suggested. The fabrication of 2/ 3 D supramolecular architectures has been proposed according to two different strategies. First, a layer-by-layer procedure has been used to obtain multilayered structures where polyelectrolyte layers have been intercalated with negatively charged alpha CD-CdS NC complexes by exploiting electrostatic interaction between polyelectrolyte and cyclodextrin OH groups. Second, a monolayer of CdS NCs has been deposited onto a self-assembled monolayer of sulfated CDs, thus combining the use of an electrostatic-force-based approach and host-guest chemistry. The important role played by host-guest interactions has then been revealed.

Alpha-cyclodextrin functionalized CdS nanocrystals for fabrication of 2/3 D assemblies.

GIOTTA, Livia;
2006

Abstract

Different types of cyclodextrins (CDs) have been tested as mediators for the water phase transfer of organic-capped CdS nanocrystals (NCs), and alpha CD has been demonstrated to be the most effective system. The formation of a complex based on alpha CDs and colloidal NCs has been considered to be responsible for the phase transfer process and extensively investigated by optical, structural, and calorimetric measurements, as a function of the experimental parameters (pH and NC and CD concentration). A mechanism for the complexation phenomena has been suggested. The fabrication of 2/ 3 D supramolecular architectures has been proposed according to two different strategies. First, a layer-by-layer procedure has been used to obtain multilayered structures where polyelectrolyte layers have been intercalated with negatively charged alpha CD-CdS NC complexes by exploiting electrostatic interaction between polyelectrolyte and cyclodextrin OH groups. Second, a monolayer of CdS NCs has been deposited onto a self-assembled monolayer of sulfated CDs, thus combining the use of an electrostatic-force-based approach and host-guest chemistry. The important role played by host-guest interactions has then been revealed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11587/108135
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 28
social impact