If neutrinos have mass, they can also decay. Decay lifetimes of cosmological interest can be probed, in principle, through the detection of the redshifted, diffuse neutrino flux produced by all past supernovae—the so-called supernova relic neutrino (SRN) flux. In this work, we solve the SRN kinetic equations in the general case of three-generation flavor transitions followed by invisible (nonradiative) two-body decays. We then use the general solution to calculate observable SRN spectra in some representative decay scenarios. It is shown that, in the presence of decay, the SRN event rate can basically span the whole range below the current experimental upper bound—a range accessible to future experimental projects. Radiative SRN decays are also briefly discussed.
Three-generation flavor transitions and decays of supernova relic neutrinos
MONTANINO, Daniele
2004-01-01
Abstract
If neutrinos have mass, they can also decay. Decay lifetimes of cosmological interest can be probed, in principle, through the detection of the redshifted, diffuse neutrino flux produced by all past supernovae—the so-called supernova relic neutrino (SRN) flux. In this work, we solve the SRN kinetic equations in the general case of three-generation flavor transitions followed by invisible (nonradiative) two-body decays. We then use the general solution to calculate observable SRN spectra in some representative decay scenarios. It is shown that, in the presence of decay, the SRN event rate can basically span the whole range below the current experimental upper bound—a range accessible to future experimental projects. Radiative SRN decays are also briefly discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.