SCOPUS eid=2-s2.0-20144384127 - Neural networks have recently received a great deal of attention in the field of manufacturing process quality control, where statistical techniques have traditionally been used. In this paper, a neural-based procedure for quality monitoring is discussed from a statistical perspective. The neural network is based on Fuzzy ART, which is exploited for recognising any unnatural change in the state of a manufacturing process. Initially, the neural algorithm is analysed by means of geometrical arguments. Then, in order to evaluate control performances in terms of errors of Types I and II, the effects of three tuneable parameters are examined through a statistical model. Upper, bound limits for the error rates are analytically computed, and then numerically illustrated for different combinations of the tuneable parameters. Finally, a criterion for the neural network designing is proposed and validated in a specific test case through simulation. The results demonstrate the effectiveness of the proposed neural-based procedure for manufacturing quality monitoring. (c) 2005 Elsevier Ltd. All rights reserved.

Understanding ART-based neural algorithms as statistical tools for manufacturing process quality control

PACELLA, Massimo;
2005

Abstract

SCOPUS eid=2-s2.0-20144384127 - Neural networks have recently received a great deal of attention in the field of manufacturing process quality control, where statistical techniques have traditionally been used. In this paper, a neural-based procedure for quality monitoring is discussed from a statistical perspective. The neural network is based on Fuzzy ART, which is exploited for recognising any unnatural change in the state of a manufacturing process. Initially, the neural algorithm is analysed by means of geometrical arguments. Then, in order to evaluate control performances in terms of errors of Types I and II, the effects of three tuneable parameters are examined through a statistical model. Upper, bound limits for the error rates are analytically computed, and then numerically illustrated for different combinations of the tuneable parameters. Finally, a criterion for the neural network designing is proposed and validated in a specific test case through simulation. The results demonstrate the effectiveness of the proposed neural-based procedure for manufacturing quality monitoring. (c) 2005 Elsevier Ltd. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11587/107079
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 10
social impact