SCOPUS eid=2-s2.0-20144384127 - Neural networks have recently received a great deal of attention in the field of manufacturing process quality control, where statistical techniques have traditionally been used. In this paper, a neural-based procedure for quality monitoring is discussed from a statistical perspective. The neural network is based on Fuzzy ART, which is exploited for recognising any unnatural change in the state of a manufacturing process. Initially, the neural algorithm is analysed by means of geometrical arguments. Then, in order to evaluate control performances in terms of errors of Types I and II, the effects of three tuneable parameters are examined through a statistical model. Upper, bound limits for the error rates are analytically computed, and then numerically illustrated for different combinations of the tuneable parameters. Finally, a criterion for the neural network designing is proposed and validated in a specific test case through simulation. The results demonstrate the effectiveness of the proposed neural-based procedure for manufacturing quality monitoring. (c) 2005 Elsevier Ltd. All rights reserved.
Titolo: | Understanding ART-based neural algorithms as statistical tools for manufacturing process quality control |
Autori: | |
Data di pubblicazione: | 2005 |
Rivista: | |
Abstract: | SCOPUS eid=2-s2.0-20144384127 - Neural networks have recently received a great deal of attention in the field of manufacturing process quality control, where statistical techniques have traditionally been used. In this paper, a neural-based procedure for quality monitoring is discussed from a statistical perspective. The neural network is based on Fuzzy ART, which is exploited for recognising any unnatural change in the state of a manufacturing process. Initially, the neural algorithm is analysed by means of geometrical arguments. Then, in order to evaluate control performances in terms of errors of Types I and II, the effects of three tuneable parameters are examined through a statistical model. Upper, bound limits for the error rates are analytically computed, and then numerically illustrated for different combinations of the tuneable parameters. Finally, a criterion for the neural network designing is proposed and validated in a specific test case through simulation. The results demonstrate the effectiveness of the proposed neural-based procedure for manufacturing quality monitoring. (c) 2005 Elsevier Ltd. All rights reserved. |
Handle: | http://hdl.handle.net/11587/107079 |
Appare nelle tipologie: | Articolo pubblicato su Rivista |