Glycoalkaloids are naturally occurring nitrogen-containing compounds present in many species of the family Solanaceae, including cultivated and wild potatoes (Solanum spp.), tomatoes (Lycopersicon spp.), etc. These compounds have pharmacological and toxicological effects on humans due to their significant anticholinesterase activity and disruption of cell membranes. Herein is reported the development of a, capillary electrophoresis (CE) method using nonaqueous (NA) separation solutions in combination with ion trap mass spectrometry (MS and MS/MS) detection for the identification and quantification of glycoalkaloids and their relative aglycones. A mixture 90:10 v/v of MeCN-MeOH containing 50 mm ammonium acetate and 1.2 m acetic acid (applied voltage of 25.5 kV) was selected as a good compromise for the separation and detection of these compounds. The electrospray MS measurements were carried out in the positive ionization mode using a coaxial sheath liquid, methanol-water (1:1) with 1 % of acetic acid at a flow rate of 2.5 muL/min. Under optimized experimental conditions, the predominant ion was the protonated molecular ion ([M + H] ) of solanidine (m/z = 398), tomatidine (m/z = 416), chaconine (m/z = 852), solanine (m/z = 868), and tomatine (m/z = 1034). MS/MS experiments were carried out systematically by changing the relative collisional energy and monitoring the intensities of the fragment ions that were not high enough to allow better quantification than with the mother ions. The method was used for analyzing glycoalkaloids in potato extracts.

Determination of glycoalkaloids and relative aglycones by nonaqueous capillary electrophoresis coupled with electrospray ionization-ion trap mass spectrometry

DE BENEDETTO, Giuseppe, Egidio;
2002

Abstract

Glycoalkaloids are naturally occurring nitrogen-containing compounds present in many species of the family Solanaceae, including cultivated and wild potatoes (Solanum spp.), tomatoes (Lycopersicon spp.), etc. These compounds have pharmacological and toxicological effects on humans due to their significant anticholinesterase activity and disruption of cell membranes. Herein is reported the development of a, capillary electrophoresis (CE) method using nonaqueous (NA) separation solutions in combination with ion trap mass spectrometry (MS and MS/MS) detection for the identification and quantification of glycoalkaloids and their relative aglycones. A mixture 90:10 v/v of MeCN-MeOH containing 50 mm ammonium acetate and 1.2 m acetic acid (applied voltage of 25.5 kV) was selected as a good compromise for the separation and detection of these compounds. The electrospray MS measurements were carried out in the positive ionization mode using a coaxial sheath liquid, methanol-water (1:1) with 1 % of acetic acid at a flow rate of 2.5 muL/min. Under optimized experimental conditions, the predominant ion was the protonated molecular ion ([M + H] ) of solanidine (m/z = 398), tomatidine (m/z = 416), chaconine (m/z = 852), solanine (m/z = 868), and tomatine (m/z = 1034). MS/MS experiments were carried out systematically by changing the relative collisional energy and monitoring the intensities of the fragment ions that were not high enough to allow better quantification than with the mother ions. The method was used for analyzing glycoalkaloids in potato extracts.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11587/106276
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 46
social impact