Despite the fact that symmetric Toeplitz matrices can have arbitrary eigenvalues, the numerical construction of such a matrix having prescribed eigenvalues remains to be a challenge. A two-step method using the continuation idea is proposed in this paper. The first step constructs a centro-symmetric Jacobi matrix with the prescribed eigenvalues in finitely many steps. The second step uses the Cayley transform to integrate flows in the linear subspace of skew-symmetric and centro-symmetric matrices. No special geometric integrators are needed. The convergence analysis is illustrated for the case of n = 3. Numerical examples are presented.

“The Cayley Method and the Inverse Eigenvalue Problem for Toeplitz Matrices”

SGURA, Ivonne
2002

Abstract

Despite the fact that symmetric Toeplitz matrices can have arbitrary eigenvalues, the numerical construction of such a matrix having prescribed eigenvalues remains to be a challenge. A two-step method using the continuation idea is proposed in this paper. The first step constructs a centro-symmetric Jacobi matrix with the prescribed eigenvalues in finitely many steps. The second step uses the Cayley transform to integrate flows in the linear subspace of skew-symmetric and centro-symmetric matrices. No special geometric integrators are needed. The convergence analysis is illustrated for the case of n = 3. Numerical examples are presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11587/103724
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact