A q-difference equation on eight shifted factorials of infinite order will be established. As consequences, we shall systematically explore triple products to give alternative proofs of the theta function identities due to Ewell [5, 6] and Berndt et al. [2] and briefly review their applications to the Ramanujan congruences on the partition function. In particular, a q-difference equation on quintuple products will be discovered which leads us to a new representation of $(q; q)^{10}_\infty$ and therefore a new proof of the Ramanujan congruence on the partition function modulo 11.

Theta Function Identities and Ramanujan's Congruences on Partition Function

CHU, Wenchang
2005

Abstract

A q-difference equation on eight shifted factorials of infinite order will be established. As consequences, we shall systematically explore triple products to give alternative proofs of the theta function identities due to Ewell [5, 6] and Berndt et al. [2] and briefly review their applications to the Ramanujan congruences on the partition function. In particular, a q-difference equation on quintuple products will be discovered which leads us to a new representation of $(q; q)^{10}_\infty$ and therefore a new proof of the Ramanujan congruence on the partition function modulo 11.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11587/103583
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact