We study the following one-dimensional evolution equation: $\frac{\partial u}{\partial t}(x,t)=\int_{A^{^{+}}u(x,t)}\lambda_{1}(\xi,t)\left(u(\xi,t)-u(x,t)\right)d\xi-\int_{A^{^{-}}u(x,t)}\lambda_{2}(\xi,t)\left(u(x,t)-u(\xi,t)\right)d\xi$ where $A^{^{+}}u(x,t)=\{\xi\in[0,1]\,|\, u(\xi,t)>u(x,t)\},\,\, A^{^{-}}u(x,t)=[0,1]\backslash A^{^{+}}u(x,t)$, and $\lambda_{1}$, $\lambda_{2}$ are non-negative functions. We prove existence of solutions for a particular class of initial data $u(x,0).$ We also prove that solutions are unique. Finally, under additional constraints on the initial data, we give an explicit expression for the solution.

Existence and unicity of solutions for a non-local relaxation equation

Abstract

We study the following one-dimensional evolution equation: $\frac{\partial u}{\partial t}(x,t)=\int_{A^{^{+}}u(x,t)}\lambda_{1}(\xi,t)\left(u(\xi,t)-u(x,t)\right)d\xi-\int_{A^{^{-}}u(x,t)}\lambda_{2}(\xi,t)\left(u(x,t)-u(\xi,t)\right)d\xi$ where $A^{^{+}}u(x,t)=\{\xi\in[0,1]\,|\, u(\xi,t)>u(x,t)\},\,\, A^{^{-}}u(x,t)=[0,1]\backslash A^{^{+}}u(x,t)$, and $\lambda_{1}$, $\lambda_{2}$ are non-negative functions. We prove existence of solutions for a particular class of initial data $u(x,0).$ We also prove that solutions are unique. Finally, under additional constraints on the initial data, we give an explicit expression for the solution.
Scheda breve Scheda completa Scheda completa (DC)
2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/102646
Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

• ND
• 1
• 1