Photovoltaic solar cells (SCs) based on dense arrays of III-V nanowires are believed to possess huge potentials for further improvement of their solar power conversion efficiency. A strategy to achieve this goal requires the exploitation of light wave-guiding mechanism and novel physical concepts. The former mechanism is demonstrated for GaAs-AlGaAs core-shell NWs: large enhancement (up to 200× that of homogeneous - only core - nanowires) of the GaAs near band-edge absorption have been experimentally estimated and ascribed to a wave-guiding of incident light by the surrounding AlGaAs shell. Optimization of such absorption enhancement requires careful design and control of the AlGaAs shell thickness during nanowire self-assembly. Adoption of an intermediate-band gap semiconductor (IBGS) as the SC active material allows to combine the multiband absorption functionality of IBGS with advantages associated to nanowire-based SCs; the use of dilute nitrides III-V alloys within core-multishell NW-based SCs is a very promising solution. Advantages are briefly discussed, along with major challenges in self-assembling such nanowire by MOVPE.
Why III-V nanowires can challenge high-efficiency photovoltaic solar cells
Paola Prete
Primo
;Nico LovergineUltimo
2024-01-01
Abstract
Photovoltaic solar cells (SCs) based on dense arrays of III-V nanowires are believed to possess huge potentials for further improvement of their solar power conversion efficiency. A strategy to achieve this goal requires the exploitation of light wave-guiding mechanism and novel physical concepts. The former mechanism is demonstrated for GaAs-AlGaAs core-shell NWs: large enhancement (up to 200× that of homogeneous - only core - nanowires) of the GaAs near band-edge absorption have been experimentally estimated and ascribed to a wave-guiding of incident light by the surrounding AlGaAs shell. Optimization of such absorption enhancement requires careful design and control of the AlGaAs shell thickness during nanowire self-assembly. Adoption of an intermediate-band gap semiconductor (IBGS) as the SC active material allows to combine the multiband absorption functionality of IBGS with advantages associated to nanowire-based SCs; the use of dilute nitrides III-V alloys within core-multishell NW-based SCs is a very promising solution. Advantages are briefly discussed, along with major challenges in self-assembling such nanowire by MOVPE.File | Dimensione | Formato | |
---|---|---|---|
Procs SPIE 2024 San Diego_Paper 13114-12 P_Prete - PUBLISHED.pdf
non disponibili
Descrizione: Atto di convegno
Tipologia:
Versione editoriale
Licenza:
Copyright dell'editore
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.