Recent advancements in synthetic cell construction have made possible the begin of a research program whereby these man-made systems, which resemble biological cells at a minimal complexity level, can be conceived as tools for investigating information and communication theories in the “wetware” domain. In this paper, we will firstly present the field of synthetic biology and the features of synthetic cells (in particular, synthetic cells built from scratch). In the practical field, their potential role as “smart” drug delivery agents is probably one of the most ambitious goals, which needs a well-conceived SC design and advanced features. The latter includes sensing and perception, information transduction, control and programmability. These considerations elicit, at the same time, more general and theoretical questions, here presented as a sort of programmatic discussion. We ask whether and at what extent synthetic cells can be considered a valuable platform for investigating AI, cognition, communication, evolutionary optimization in novel versions: the chemical ones. We will not deal on what AI offers to synthetic biology, but on what synthetic biology offers to AI. By depicting some research paths, here, we intend to stimulate the bottom-up synthetic cells community to look toward such themes, to develop chemical AI in basic and applied sciences.
Sketching How Synthetic Cells Can Function as a Platform to Investigate Chemical AI and Information Theories in the Wetware Domain
Stano, Pasquale
2023-01-01
Abstract
Recent advancements in synthetic cell construction have made possible the begin of a research program whereby these man-made systems, which resemble biological cells at a minimal complexity level, can be conceived as tools for investigating information and communication theories in the “wetware” domain. In this paper, we will firstly present the field of synthetic biology and the features of synthetic cells (in particular, synthetic cells built from scratch). In the practical field, their potential role as “smart” drug delivery agents is probably one of the most ambitious goals, which needs a well-conceived SC design and advanced features. The latter includes sensing and perception, information transduction, control and programmability. These considerations elicit, at the same time, more general and theoretical questions, here presented as a sort of programmatic discussion. We ask whether and at what extent synthetic cells can be considered a valuable platform for investigating AI, cognition, communication, evolutionary optimization in novel versions: the chemical ones. We will not deal on what AI offers to synthetic biology, but on what synthetic biology offers to AI. By depicting some research paths, here, we intend to stimulate the bottom-up synthetic cells community to look toward such themes, to develop chemical AI in basic and applied sciences.File | Dimensione | Formato | |
---|---|---|---|
SKETCHING FILE_split.pdf
non disponibili
Descrizione: cover + indice + capitolo
Tipologia:
Versione editoriale
Licenza:
Copyright dell'editore
Dimensione
681.75 kB
Formato
Adobe PDF
|
681.75 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.