MmWave multiple-input single-output (MISO) systems using a single-antenna receiver are regarded as a promising solution for the near future, before the full-fledged 5G MIMO will be widespread. However, for MISO systems synchronization cannot be performed jointly with user localization unless two-way transmissions are used. In this paper we show that thanks to the use of a reconfigurable intelligent surface (RIS), joint localization and synchronization is possible with only downlink MISO transmissions. The direct maximum likelihood (ML) estimator for the position and clock offset is derived. To obtain a good initialization for the ML optimization, a decoupled, relaxed estimator of position and delays is also devised, which does not require knowledge of the clock offset. Results show that the proposed approach attains the Cramer-Rao lower bound even for moderate values of the system parameters.

RIS-aided Joint Localization and Synchronization with a Single-Antenna mmWave Receiver

Fascista, A
;
Coluccia, A;
2021-01-01

Abstract

MmWave multiple-input single-output (MISO) systems using a single-antenna receiver are regarded as a promising solution for the near future, before the full-fledged 5G MIMO will be widespread. However, for MISO systems synchronization cannot be performed jointly with user localization unless two-way transmissions are used. In this paper we show that thanks to the use of a reconfigurable intelligent surface (RIS), joint localization and synchronization is possible with only downlink MISO transmissions. The direct maximum likelihood (ML) estimator for the position and clock offset is derived. To obtain a good initialization for the ML optimization, a decoupled, relaxed estimator of position and delays is also devised, which does not require knowledge of the clock offset. Results show that the proposed approach attains the Cramer-Rao lower bound even for moderate values of the system parameters.
2021
978-1-7281-7605-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/473464
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact