Cellular localization generally relies on timedifference-of-arrival (TDOA) measurements. In this paper, we investigate a novel scenario where the mobile user estimates its own position by jointly exploiting TDOA and angle of departure (AOD) measurements, which are estimated from downlink transmissions in a millimeter-wave (mmWave) multiple-input singleoutput (MISO) setup. We first perform a Fisher information analysis to derive the lower bounds on the estimation accuracy, and then propose a novel localization algorithm, which is able to provide improved performance also with few transmit antennas and limited bandwidth.

5G multi-BS positioning with a single-antenna receiver

Fascista A.;Coluccia A.;
2020-01-01

Abstract

Cellular localization generally relies on timedifference-of-arrival (TDOA) measurements. In this paper, we investigate a novel scenario where the mobile user estimates its own position by jointly exploiting TDOA and angle of departure (AOD) measurements, which are estimated from downlink transmissions in a millimeter-wave (mmWave) multiple-input singleoutput (MISO) setup. We first perform a Fisher information analysis to derive the lower bounds on the estimation accuracy, and then propose a novel localization algorithm, which is able to provide improved performance also with few transmit antennas and limited bandwidth.
2020
978-1-7281-4490-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/445022
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact