The aim of this work was the superficial activation, by means of plasma treatments, of crosslinked collagen-based scaffolds for nerve regeneration, in order to immobilize anionic and cationic microcapsules (MCPs) for drug delivery. Matrices with axially oriented pores have the potential to improve the regeneration of peripheral nerves and spinal cord by physically supporting and guiding the growth of neural structures across the site of injury. To improve mechanical resistance and stability in water solutions, it is necessary to crosslink collagenous fibres by formation of amide bonds with consequent reduction of free amino and carboxylic groups useful for immobilization approach of drug delivery systems like MCPs. Plasma chemical processes represent a successful approach because allow polar groups to be grafted on the surface, without modifying the massive properties of the bulk. Plasma surface modification was performed in a capacitively-coupled rf (13.56 MHz) glass reactor fed with different precursors like N2, H2O, C2H4 to study the effect of plasma parameters on the chemical properties of the resulting material and its ability to improve the immobilization of polyelectrolyte MCPs. Cylindrical scaffolds were synthesized by freeze-drying technique and dehydrothermally crosslinked. Polyelectrolyte capsules were obtained by LbL method. Scaffolds were characterized by means of WCA and XPS. Fluorescence microscopy was used to verify MCPs immobilization. After treatments, scaffolds became hydrophilic and able to absorb water. The success of grafting, on the external surface and within the scaffold core, was clearly revealed. The obtained results demonstrate that plasma processing of cross-linked collagen allows to enhance MCPs immobilization and that, by changing the typology of functional groups on the plasma treated surfaces, a different attitude to immobilize negatively or positively charged MCPs is observed.

Plasma assisted immobilization of microcapsules for drug delivery on collagen-based matrices for peripheral nerve regeneration

MADAGHIELE, Marta;SALVATORE, LUCA;RINALDI, Rosaria;SANNINO, Alessandro;
2014-01-01

Abstract

The aim of this work was the superficial activation, by means of plasma treatments, of crosslinked collagen-based scaffolds for nerve regeneration, in order to immobilize anionic and cationic microcapsules (MCPs) for drug delivery. Matrices with axially oriented pores have the potential to improve the regeneration of peripheral nerves and spinal cord by physically supporting and guiding the growth of neural structures across the site of injury. To improve mechanical resistance and stability in water solutions, it is necessary to crosslink collagenous fibres by formation of amide bonds with consequent reduction of free amino and carboxylic groups useful for immobilization approach of drug delivery systems like MCPs. Plasma chemical processes represent a successful approach because allow polar groups to be grafted on the surface, without modifying the massive properties of the bulk. Plasma surface modification was performed in a capacitively-coupled rf (13.56 MHz) glass reactor fed with different precursors like N2, H2O, C2H4 to study the effect of plasma parameters on the chemical properties of the resulting material and its ability to improve the immobilization of polyelectrolyte MCPs. Cylindrical scaffolds were synthesized by freeze-drying technique and dehydrothermally crosslinked. Polyelectrolyte capsules were obtained by LbL method. Scaffolds were characterized by means of WCA and XPS. Fluorescence microscopy was used to verify MCPs immobilization. After treatments, scaffolds became hydrophilic and able to absorb water. The success of grafting, on the external surface and within the scaffold core, was clearly revealed. The obtained results demonstrate that plasma processing of cross-linked collagen allows to enhance MCPs immobilization and that, by changing the typology of functional groups on the plasma treated surfaces, a different attitude to immobilize negatively or positively charged MCPs is observed.
2014
9788897683520
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/389572
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact