In this chapter, a new seismic protection device is proposed. It is designed to dissipate the energy entering a structure subject to seismic action through the activation of hysteresis loops of the material that composes it. These devices are characterized by a high capacity to absorb the seismic energy and the ability to concentrate the damage on it and, consequently, to keep the structure and the structural parts undamaged. Moreover, after a seismic event they can be easily replaced. In particular, this chapter proposes a new shear device that shows the plasticity of some areas of the device at low load levels. In order to maximize the amount of dissipated energy, the design of the device was performed by requiring that the material be stressed in an almost uniform way. In particular, the device is designed to concentrate energy dissipation for plasticity in the aluminum core while the steel parts are responsible to make stiffer the device, limiting out-of-plane instability phenomena. The geometric configuration that maximizes the energy dissipation has been determined using a structural optimization routine of finite element software.

Optimum Design of a New Hysteretic DissipaterDesign Optimization of Active and Passive Structural Control Systems

NOBILE, RICCARDO
2012-01-01

Abstract

In this chapter, a new seismic protection device is proposed. It is designed to dissipate the energy entering a structure subject to seismic action through the activation of hysteresis loops of the material that composes it. These devices are characterized by a high capacity to absorb the seismic energy and the ability to concentrate the damage on it and, consequently, to keep the structure and the structural parts undamaged. Moreover, after a seismic event they can be easily replaced. In particular, this chapter proposes a new shear device that shows the plasticity of some areas of the device at low load levels. In order to maximize the amount of dissipated energy, the design of the device was performed by requiring that the material be stressed in an almost uniform way. In particular, the device is designed to concentrate energy dissipation for plasticity in the aluminum core while the steel parts are responsible to make stiffer the device, limiting out-of-plane instability phenomena. The geometric configuration that maximizes the energy dissipation has been determined using a structural optimization routine of finite element software.
2012
9781466620292
9781466620308
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/381765
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact