In this paper it is described an algorithm, implemented in a biaxial solar tracker, that can instantly calculate the sun position at the latitude and longitude of a set point. The algorithm can drive up to two engines which are able to change the position of a solar panel, in order to increase its efficiency, for tracking the sun in its movement from east to west (azimuth motion) and in its elevation up to solar noon (tilt motion). The whole system is adaptable to various types of structures as it involves a cycle of self-learning of the structure and consequently the adaptation of calculations to the tracker on which it is installed.

Electronic system for improvement of solar plant efficiency by optimized algorithm implemented in biaxial solar trackers

VISCONTI, Paolo;
2011-01-01

Abstract

In this paper it is described an algorithm, implemented in a biaxial solar tracker, that can instantly calculate the sun position at the latitude and longitude of a set point. The algorithm can drive up to two engines which are able to change the position of a solar panel, in order to increase its efficiency, for tracking the sun in its movement from east to west (azimuth motion) and in its elevation up to solar noon (tilt motion). The whole system is adaptable to various types of structures as it involves a cycle of self-learning of the structure and consequently the adaptation of calculations to the tracker on which it is installed.
2011
9781424487813
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11587/374087
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact